
Java is becoming the most popular development language for today’s systems. Since there are
so many java coding techniques and java object options, java can be particularly difficult to
design, complex to code, and problematic for achieving your performance goals. This
presentation will take you through my experiences over the last four years tuning client java
systems running on z/OS and distributed system. It will also highlight the new Data Studio and
pureQuery features and its ability to code your java database access in many different fashions
to match whatever application requirements are necessary.
In addition, discussions will also highlight pureQuery that can enhances performance and tuning
capabilities by statically binding your java against the DB2 system. This enhances the
accountability of your SQL, provides many security advantages and debugging capabilities.
Through this presentation you will learn the java system architectures, coding techniques and
what questions to ask to fix your java system performance issues.

1

David Beulke is an internationally recognized DB2 consultant, author and lecturer. He is
known for his extensive expertise in database performance, data warehouses and internet
applications.
He is an augural member of the IBM Data Champion program, member of IBM DB2 Gold
Consultant program, Past President of the International DB2 Users Group (IDUG), a
columnist for DB2 Magazine, co-author of the IBM V8 and V7 z/OS DB2 Administration
Certification exam, co-author of the Business Intelligence Certification exam, former
instructor for The Data Warehouse Institute (TDWI), and former editor of the IDUG Solutions
Journal.
His consulting and educational expertise helps clients with developing new systems, tuning
performance problems or reducing costs on their mainframe, UNIX and Windows
systems. His clients save millions of dollars in CPU charges, avoided unnecessary hardware
upgrades and improved application development through his customer focused solutions,
performance tuning expertise and expert business designs.

Data Studio and pureQuery offers the ability to code your java database access in
many different fashions to match whatever application requirements are necessary.
Using inLine statements, Java methods, object relational mapping, or named
queries pureQuery offers the java programmer the flexibility to match their coding
style with the application requirements.

In addition, pureQuery enhances the accountability of the java SQL code since it
can now be statically bound against the DB2 system and database objects.
Statically binding the java SQL to the system provides many advantages which are
highlight in the presentation.

These are the topics covered in this presentation. Additional information can also be found on the
following web sites.

Understanding pureQuery, Part 1:
pureQuery: IBM's new paradigm for writing Java database applications
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0708ahadian/

IBM Data Studio Information Center
http://publib.boulder.ibm.com/infocenter/dstudio/v1r1m0/index.jsp

pureQuery rapid application development
http://www.ibm.com/developerworks/edu/dm-dw-dm-0711surange-
i.html?S_TACT=105AGX11&S_CMP=LP

The connections to the database are the majority of the issues encountered with java
applications. The problems usually fall into three categories. Too many connections, not
released connections or duplicate connections.

All of these situations provide difficulty in debugging, maintaining transaction integrity and the
ability to tune the application transaction enviornment.

5

Distributed java applications can use a lot of resources against the database, servers and overall
operating environment. The connections to the various resources can be a major issue for
debugging and logging against the environment.

Sometimes the number of message queues can become an issue and minimizing the number of
connections, the time that they are open and the amount of messages per transaction are critical
for achieving performance.

Also managing the message queue activity is important to make sure the queue is robust enough
to handle the message workload. Remember it is a queue and not a high performance database.

6

Transaction scope sometimes gets lost within the design team of the distributed java
applications. Since the java development world of small reusable services are spread across the
development staff sometimes the java web service does not concern itself with the UOW and
the transaction scope. This can be a major problem as the number of services called or involved
in a transaction escalate.

Sometimes the database access has totally been handled through a persistence layer such as
Hibernate. These persistence layers are very convenient but are just another layer of debugging
and complexity. In most cases they are just another problem by rewriting the SQL, flushing
their persistence poorly or forcing another layer for the transactions to go through.

7

SOA architectures are the current fashion for application development. Managing these new
environment requires extra attention to the how and when the application or the many different
services interact with the database. The load balanced server configurations can have many
different hardware capacity, memory allocations, software levels/releases and each cell can cause a
different performance problem.

AJAX and dynamic application can create many connections and fire many SQL statements
against the database environment. Try to use the new pureQuery Java application connection
because it is static and pre-authorizes the database objects, plan/package authorization and security
profile.

In addition to all the capacity and performance issues, the services need to maintain their
transaction integrity. Services need to make sure they notify other services when any error or SQL
return code causes a rollback.

Only basic java exception handling is generated within the Data Studio pureQuery generated
modules. Good news is that error handling is at least present. Bad news is that it may not be
what the java application needs to control or complete the processing logic.

For example, SQL and java exceptions can happen for a variety of reasons the generic exception
may not be appropriate for situations such as more than one row qualifies in the result set (-
811), or row not found (+100). Application developers need to generate test cases for these and
other expected and unexpected application processing errors.

The commit scope of the java application development needs to be fully communicated and
understood by the java development team. Since every application is using a services architecture
these days it is very improtant to understand the integrity commit scope of all the applications.
pureQuery automatically generates setAutoCommit statements within its module code and needs to
be manage properly by the programmer to maintain transaction service integrity.
In addition to the setAutoCommit a database connection is usually generated with a pureQuery
module. The connection information can be great to relieve the java application developer from this
tedious task. The common error is that a large number of connections can be required by the
application. Another potential issue is that the commit scope may not be valid because when a
connection is started a Unit-of-Work (UOW) is started. Starting a new UOW may not be desired
because this new service or transaction may need to be in the same overall transaction or service
commit scope of other dependent activities. Make sure to verify the commit scopes of the java
application and the number of connections used throughout the application.

The biggest impact Data Studio and pureQuery are static bind capabilities for all the java
applications. By providing static binds the accountability, monitoring and pinpointing of the
SQL within the java source code is possible. All this information will provide great debugging
and performance improvements for everyone’s java applications.

The Visual Explain facilities are also integrated into Data Studio and are great for explaining the
static bind SQL application information within the tool. This provides the java application
developer with all the regular debugging and access table and index access path dependency
information.

The release of Data Studio Beta in the summer of 2007 was the beginning of pureQuery and the
major enhancements to java within DB2 9 for zOS and LUW systems. These enhancements
allow the java developer the flexibility to tailor the java SQL to the java EE or servlet or EJB
implementation.

This pureQuery flexibility along with the ability to return Web 2.0 artifacts such as JSON, XML
along with its integration with Eclipse and xQuery provide all types of usage and style
possibilities.

The initial advantages of pureQuery were its ability to provide database access in many different
styles that are being offered by many different java frameworks, development products and java
architectures. These ideas from the Spring Framework, openJPA, Service Data Objects, Java
Data Objects, Hibernate, iBatis, amd the Java Persistence API required distinct SQL coding styles
to access the database. Each camp of these java community frameworks and development
products provided great specialized access architectures for particular types of processing access
but were lacking for other types of application situations.
pureQuery’s flexibility to provide all these different coding styles and the ability to mix and
match them within a single java class eliminates the controversy of what framework or style is
best. The java coding style that works best for the application is best and eliminates the industry
discussion noise and moves everyone to making the application work efficiently.
pureQuery also moves the java development community toward accountability for their
application SQL by statically binding the SQL into the DB2 system and database. The years of
java programs being lumped together within large JAR class files and embedded within
Websphere WAR application files are gone and individual SQL statements within particular java
class files can be monitored, analyzed and pinpointed within every java application. pureQuery
statically bound SQL programs improves accountability by also locking in a database access path
and the security profile of the use and access types.

pureQuery also provides access through SQL and xQuery to XML and memory cached objects
within a java frameworks persistence layers. This is enables pureQuery developers to leverage
the latest developments with in-memory objects and in-memory databases.

This pureQuery interface provides developers the ability to put any type of simple SQL or
multi-table join complex SQL or xQuery object access into a java class and map it appropriately
to the underlying data store. This capability provides great debugging, monitoring and analysis
capabilities for all types of virtual and static data objects. This also helps every SQL or xQuery
pureQuery process to match data types, domains and ranges to further eliminate data
mismatches and error situations.

pureQuery provides the ability to statically Bind a java class SQL module to the database. This
is similar to what many shops have done for many years with COBOL and many other
application development languages. Statically Binding a java module against the database
system is just like a COBOL Bind against the database system and it provides all the same
benefits also.

The benefits of static java modules are that it eliminates object, user and access path
authorizations. These tasks were very cumbersome for JDBC applications verifying,
authorizing and developing an access path for every SQL statement within every transaction
execution. The DB2 system mechanisms of Dynamic Statement Cache and EDM pool caching
of dynamic statements did a wonderful job o minimizing the JDBC dynamic statement costs but
statically bound java application completely eliminate these costs. Since many large
corporations execute 100’s of millions of dynamic JDBC java application transactions daily,
statically bound java application will reduce CPU demands substantially for many corporations.

Statically bound pureQuery java application modules provide a great deal of information for
monitoring and performance analysis within the run-time environment. The ability to track the
java application modules via, application name, java class name, and java method name
provides a lot of flexibility for monitoring and pinpointing java application code issues. These
monitoring and tracking options go even further providing the Source code line number and
compile timestamp of the java code for absolute debugging and performance analysis.

Data Studio also integrates Visual Explain capabilities directly into the menus so that the
developers can quickly reference the access path information and fully understand the database
tables and indexes referenced to retrieve the underlying data.

The iBatis framework with its DAO mapping provided named query style java database data
access objects. These mapping were the layer that sometimes separated out the SQL developer
from the java programmer. This separation also led to many hours debugging performance
problems and inconsistencies from the DAO layer to the java code that referenced the data.

Hibernate with its Object Relational Mapping (ORM) framework was great as long as the ORM
framework matched the object view of the data. When the objects were merged or separated the
SQL needed to be changed also. Hibernate’s ORM framework was also difficult to map multiple
table joins because as the result set changed the ORM mapping needed to be changed.

Both Hibernate and iBatis frameworks successfully abstracted the data persistence layer to inline
and ORM objects that are then referenced in the java application code. This architecture
abstraction presents a problem because it does not tie back to the source SQL database access and
each architecture has its preferred inLine or ORM coding style. The coding style hinders
developers from using the best java coding style for the application module of service design.
pureQuery allows all styles of programming and ties back to the SQL through the static Bind
process for monitoring and accountability.

Data Studio generates all the different parts of the SQL code. In this slide we show the old classic
manual coding style of JDBC code. This slide shows how loose the program code was for a
typical JDBC program.

Note the various statements to check the JDBC Context and the various connection statements.
All of these JDBC SQL parts are tightly generated from Data Studio helping to eliminate coding
syntax errors and the tedious coding standard java interfaces.

Data Studio with its ability to generate all the different styles of calling the database are a great
productivity asset to the java developer. This capability provides the java developer with the
ability to quickly generate error free SQL statements to retrieve, insert, update and delete
database rows.

In addition to generating of the SQL statements, Data Studio also generates DBMS connection
code. This handles one of the more confusing items for the database developer. Also the
generated code also handles commit situations, and the database exception handling of errors
within the java module.

The inLine programming style is common to the iBatis framework. pureQuery provides a
simple way to generate the code for this style of programming.

Looking at the capabilities within Data Studio, within several clicks the SQL code is generated,
the exception handling along with a module that can be tested and validated.

In this inLine style example, it shows the connection information, the SQL and the resultSet
iterator to retrieve all the database table SQL data. This nice routine quickly retrieves the data
and presents it.

Note the generated AutoCommit(false) within the code. Special analysis and handling of the
commit scope of a module needs to be done to make sure the module or service is handling the
work properly.

Also note the rollback within the module that could be referenced if there are no rows retrieved
through the SQL statement. These generated statements are fine the way the code is generated
and works now but may need to changed if the module or transaction logic changes.

Within one module all the necessary java SQL methods can be generated for an application
manipulating table data. All of the statements provide the developer with many options for
retrieving and manipulating the table data.

In addition to these statements the developer can add any additional SQL statements to the
module. When adding these new SQL statements Data Studio will automatically validate the
SQL, the column names and the overall syntax of the SQL statement.

The pureQuery process has all the Bind options of z/OS and LUW platforms.

23

The Static Bind process for java application puts all the standard elements within the DB2
Catalog. This helps everyone by allowing catalog queries to highlight the various dependent
table and index objects. This also allows all the standard tools and thrid part products to get
object information through their normal package dependencies interfaces.

You can also query all the bind parameters for a particular process to understand all of its
unique settings.

Data Studio and pureQuery provide many new facilities to help the java application developer
be more productive and write better SQL. The first facility of generating the SQL from the
database, columns directly helps eliminate table and column errors along with column data type
mismatches. Next the ability to generate ORM, method and all types of java SQL modules
allows the developer to generate the best coding style for the application.
Next the Static Bind capabilities bring out all the classic advantages of static processes over
dynamic processes within a database system. Pre-compiling and binding the java SQL
application code verifies security profiles, object existence and definition and the most
important process of generating a database access path that can be locked in for the processing.
This access path generation can be very time and resource intensive and doing it once instead of
for every execution of the process can save huge amounts of CPU for many enterprises.

Data Studio with its ability to generate all types of data access objects provides a huge
productivity improvement for java application developers. Generating standard SQL, complex
SQL XML or in-memory data objects is straight forward.

Also the Data Studio Database Explorer and integrated testing provide great single click testing
and database discovery capabilities. These capabilities provide new ways for the java
application developer to test and see the result of their SQL or XML.

Data Studio and pureQuery also provide a way to integrate any type of java application code.
This can be used to integrate or create all types of java data objects for any OO design point.
This is especially important for application developer or efforts that require XML JSON or
customer driven interfaces.

26

The process for enabling pureQuery within your project is very straight forward.
1) Add pureQuery libraries
2) Set Capture On within the settings
3) Execute all aspects of the application
4) Bind the “captured SQL file”
5) Execute the application as a static Java application
6) Or reject any lines not captured into your static application environment

27

Within Data studio with pureQuery you can cross reference the SQL statements to the source
module. Within Outline mode of the module you can quickly see the SQL reference table and
the various columns used by the module.

28

What other questions do you have?

29

The most important advantage of Data Studio and pureQuery are its capabilities to do a static
bind for java SQL applications. In addition to all the static bind advantages highlighted on the
previous slide, having a static java application environment helps the system reduces memory
allocations. Since the workload is static it no longer requires a large system Dynamic Statement
Cache, a large EDM Pool or a large number of server connections.
Static SQL and static processes within DB2 system reduce the system resources required to
execute the SQL processing. For example it can reduce the overall CPU demand and result in
significant charge back savings within an enterprise.

